60 research outputs found

    Markov chains revisited

    Full text link
    A book on Markov chains

    Bounding stationary averages of polynomial diffusions via semidefinite programming

    Get PDF
    We introduce an algorithm based on semidefinite programming that yields increasing (resp. decreasing) sequences of lower (resp. upper) bounds on polynomial stationary averages of diffusions with polynomial drift vector and diffusion coefficients. The bounds are obtained by optimising an objective, determined by the stationary average of interest, over the set of real vectors defined by certain linear equalities and semidefinite inequalities which are satisfied by the moments of any stationary measure of the diffusion. We exemplify the use of the approach through several applications: a Bayesian inference problem; the computation of Lyapunov exponents of linear ordinary differential equations perturbed by multiplicative white noise; and a reliability problem from structural mechanics. Additionally, we prove that the bounds converge to the infimum and supremum of the set of stationary averages for certain SDEs associated with the computation of the Lyapunov exponents, and we provide numerical evidence of convergence in more general settings

    Approximations of countably-infinite linear programs over bounded measure spaces

    Get PDF
    We study a class of countably-infinite-dimensional linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined weighted spaces of measures. We show how to approximate the optimal value, optimal points, and minimal points of these CILPs by solving finite-dimensional linear programs. The errors of our approximations converge to zero as the size of the finite-dimensional program approaches that of the original problem and are easy to bound in practice. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov~chains

    Diffusion Limit for the Random Walk Metropolis Algorithm out of stationarity

    Get PDF

    Non-stationary phase of the MALA algorithm

    Get PDF
    The Metropolis-Adjusted Langevin Algorithm (MALA) is a Markov Chain Monte Carlo method which creates a Markov chain reversible with respect to a given target distribution, pi^N, with Lebesgue density on R^N; it can hence be used to approximately sample the target distribution. When the dimension N is large a key question is to determine the computational cost of the algorithm as a function of N. One approach to this question, which we adopt here, is to derive diffusion limits for the algorithm. The family of target measures that we consider in this paper are, in general, in non-product form and are of interest in applied problems as they arise in Bayesian nonparametric statistics and in the study of conditioned diffusions. Furthermore, we study the situation, which arises in practice, where the algorithm is started out of stationarity. We thereby significantly extend previous works which consider either only measures of product form, when the Markov chain is started out of stationarity, or measures defined via a density with respect to a Gaussian, when the Markov chain is started in stationarity. We prove that, in the non-stationary regime, the computational cost of the algorithm is of the order N^(1/2) with dimension, as opposed to what is known to happen in the stationary regime, where the cost is of the order N^(1/3).Comment: 37 pages. arXiv admin note: text overlap with arXiv:1405.489

    Diffusion Limit for the Random Walk Metropolis Algorithm out of stationarity

    Get PDF
    The Random Walk Metropolis (RWM) algorithm is a Metropolis–Hastings Markov Chain Monte Carlo algorithm designed to sample from a given target distribution π^N with Lebesgue density on R^N. Like any other Metropolis–Hastings algorithm, RWM constructs a Markov chain by randomly proposing a new position (the “proposal move”), which is then accepted or rejected according to a rule which makes the chain reversible with respect to π^N. When the dimension N is large, a key question is to determine the optimal scaling with N of the proposal variance: if the proposal variance is too large, the algorithm will reject the proposed moves too often; if it is too small, the algorithm will explore the state space too slowly. Determining the optimal scaling of the proposal variance gives a measure of the cost of the algorithm as well. One approach to tackle this issue, which we adopt here, is to derive diffusion limits for the algorithm. Such an approach has been proposed in the seminal papers (Ann. Appl. Probab. 7 (1) (1997) 110–120; J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 (1) (1998) 255–268). In particular, in (Ann. Appl. Probab. 7 (1) (1997) 110–120) the authors derive a diffusion limit for the RWM algorithm under the two following assumptions: (i) the algorithm is started in stationarity; (ii) the target measure π^N is in product form. The present paper considers the situation of practical interest in which both assumptions (i) and (ii) are removed. That is (a) we study the case (which occurs in practice) in which the algorithm is started out of stationarity and (b) we consider target measures which are in non-product form. Roughly speaking, we consider target measures that admit a density with respect to Gaussian; such measures arise in Bayesian nonparametric statistics and in the study of conditioned diffusions. We prove that, out of stationarity, the optimal scaling for the proposal variance is O(N^(−1)), as it is in stationarity. In this optimal scaling, a diffusion limit is obtained and the cost of reaching and exploring the invariant measure scales as O(N). Notice that the optimal scaling in and out of stationatity need not be the same in general, and indeed they differ e.g. in the case of the MALA algorithm (Stoch. Partial Differ. Equ. Anal Comput. 6 (3) (2018) 446–499). More importantly, our diffusion limit is given by a stochastic PDE, coupled to a scalar ordinary differential equation; such an ODE gives a measure of how far from stationarity the process is and can therefore be taken as an indicator of convergence. In this sense, this paper contributes understanding to the old-standing problem of monitoring convergence of MCMC algorithms

    Scalable particle-based alternatives to EM

    Get PDF
    (Neal and Hinton, 1998) recast the problem tackled by EM as the minimization of a free energy functional FF on an infinite-dimensional space and EM itself as coordinate descent applied to FF. Here, we explore alternative ways to optimize the functional. In particular, we identify various gradient flows associated with FF and show that their limits coincide with FF's stationary points. By discretizing the flows, we obtain three practical particle-based algorithms for maximum likelihood estimation in broad classes of latent variable models. The novel algorithms scale well to high-dimensional settings and outperform existing state-of-the-art methods in experiments

    Diffusion Limit For The Random Walk Metropolis Algorithm Out Of stationarity

    Get PDF
    The Random Walk Metropolis (RWM) algorithm is a Metropolis–Hastings Markov Chain Monte Carlo algorithm designed to sample from a given target distribution π^N with Lebesgue density on R^N. Like any other Metropolis–Hastings algorithm, RWM constructs a Markov chain by randomly proposing a new position (the “proposal move”), which is then accepted or rejected according to a rule which makes the chain reversible with respect to π^N. When the dimension N is large, a key question is to determine the optimal scaling with N of the proposal variance: if the proposal variance is too large, the algorithm will reject the proposed moves too often; if it is too small, the algorithm will explore the state space too slowly. Determining the optimal scaling of the proposal variance gives a measure of the cost of the algorithm as well. One approach to tackle this issue, which we adopt here, is to derive diffusion limits for the algorithm. Such an approach has been proposed in the seminal papers (Ann. Appl. Probab. 7 (1) (1997) 110–120; J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 (1) (1998) 255–268). In particular, in (Ann. Appl. Probab. 7 (1) (1997) 110–120) the authors derive a diffusion limit for the RWM algorithm under the two following assumptions: (i) the algorithm is started in stationarity; (ii) the target measure π^N is in product form. The present paper considers the situation of practical interest in which both assumptions (i) and (ii) are removed. That is (a) we study the case (which occurs in practice) in which the algorithm is started out of stationarity and (b) we consider target measures which are in non-product form. Roughly speaking, we consider target measures that admit a density with respect to Gaussian; such measures arise in Bayesian nonparametric statistics and in the study of conditioned diffusions. We prove that, out of stationarity, the optimal scaling for the proposal variance is O(N^(−1)), as it is in stationarity. In this optimal scaling, a diffusion limit is obtained and the cost of reaching and exploring the invariant measure scales as O(N). Notice that the optimal scaling in and out of stationatity need not be the same in general, and indeed they differ e.g. in the case of the MALA algorithm (Stoch. Partial Differ. Equ. Anal Comput. 6 (3) (2018) 446–499). More importantly, our diffusion limit is given by a stochastic PDE, coupled to a scalar ordinary differential equation; such an ODE gives a measure of how far from stationarity the process is and can therefore be taken as an indicator of convergence. In this sense, this paper contributes understanding to the old-standing problem of monitoring convergence of MCMC algorithms
    corecore